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Abstract. In this paper we provide an automaton-based solution to
the decision problem for a large set of monadic second-order theories of
deterministic tree structures. We achieve it in two steps: first, we reduce
the considered problem to the problem of determining, for any Rabin tree
automaton, whether it accepts a given tree; then, we exploit a suitable
notion of tree equivalence to reduce (a number of instances of) the latter
problem to the decidable case of regular trees. We prove that such a
reduction works for a large class of trees, that we call residually regular
trees. We conclude the paper with a short discussion of related work.

1 Introduction

The automatic verification of properties of infinite state systems is a crucial
problem in computer science, which turns out to be undecidable in many cases.
A natural approach to this problem is to model a transition system as a di-
rected graph, whose vertices (resp. edges) represent system configurations (resp.
transitions). The expected behavior of the system is then expressed by a logical
formula, which can be satisfied or not by the corresponding graph. The verifica-
tion problem consists in deciding the satisfiability (resp. truth) of a given formula
(resp. sentence) over a fixed graph structure. In this paper, we address the ver-
ification problem for systems of monadic second-order (MSO) logic interpreted
over deterministic tree structures.

A fundamental result in the case of finite state systems is Büchi’s theorem
[2], that shows the decidability of the MSO theory of the linear order (N, <).
Such a result takes advantage of closure properties of language acceptors (Büchi
automata) with respect to union, intersection, complementation, and projection.
Later, Rabin extended this result to the theory of the infinite (complete) binary
tree by exploiting a new class of automata, called Rabin tree automata [20].
Büchi’s theorem has also been used to deal with expansions of (N, <) with suit-
able unary predicates. Given a unary predicate P ⊆ N, the decision problem
for the theory of the expanded structure (N, <, P ) is the problem of determin-
ing, for any Büchi automaton M , whether M accepts (the infinite word that
characterizes) P . Elgot and Rabin gave a positive answer to this problem for
some relevant predicates, such as the factorial one [15]. Recently, Carton and
Thomas generalized such a result to the class of the so-called residually ulti-
mately periodic words (which includes the class of morphic infinite words) [7].



In [19], Muller and Schupp brought the interest to MSO theories of graphs by
identifying a large family of decidable graphs. Several approaches to the problem
of deciding graph theories have been proposed in the literature. The transfor-
mational approach solves the problem for those graphs that are obtained by
applying decidability-preserving transformations to structures which are known
to be decidable, e.g., unfoldings [14], tree-graph operations [23], first-order inter-
pretations and inverse rational mappings [10], MSO definable transductions [13].
Other approaches capture decidable graph structures through rewriting systems
[8], transducers [4], or equational systems [11, 12]. As a matter of fact, different
characterizations of the same family of graphs have been obtained by following
different approaches. As an example, prefix-recognizable graphs [3] can be equiv-
alently described by means of rational restrictions of inverse rational mappings
of the infinite complete binary tree [10], MSO interpretations of infinite regular
trees [22], and vertex-replacement equational graphs [1].

In this paper we extend Carton and Thomas’ automaton-based approach [7]
to cope with the decision problem for a large set of MSO theories of deterministic
tree structures. First, we reduce the considered problem to the problem of de-
termining, for any Rabin tree automaton, whether it accepts a given tree. Then,
we exploit a suitable notion of tree equivalence to reduce (a number of instances
of) the latter problem to the decidable case of regular trees. We prove that such
a reduction works for a large class of trees, that we call residually regular trees.
Successively, we show that the proposed technique can be used to decide the
theories of some meaningful relational structures, including several trees in the
Caucal hierarchy [9] and trees outside it [6]. We conclude the paper with a short
discussion of related work.

2 Basic Notions

MSO logics. MSO logics over graph structures are defined as follows. Given a
finite alphabet Λ, a Λ-labeled graph structure is a tuple G = (S, (El)l∈Λ), where
S (also denoted Dom(G)) is a countable set of vertices (states) and (El)l∈Λ are
binary relations defining the edge labels. A graph is said to be deterministic if,
for each relation El, (u, v) ∈ El and (u,w) ∈ El imply v = w. MSO formulas are
built up from atoms of the forms xi = xj , Xk(xj), and El(xi, xj) by means of the
Boolean connectives ∨ and ¬ and the existential quantification over first-order
variables xi, xj , . . ., interpreted as single vertices, and second-order ones Xk, . . .,
interpreted as sets of vertices. The semantics of an MSO formula is defined
in the standard way [21]. For a given MSO formula ϕ(x1, . . . , xn, X1, . . . , Xm),
with free variables x1, . . . , xn, X1, . . . , Xm, we write G ² ϕ[v1, . . . , vn, V1, . . . , Vm]
whenever ϕ holds in the structure G with the interpretation vi for xi, for 1 ≤ i ≤
n, and Vj for Xj , for 1 ≤ j ≤ m. In the following, we shall adopt a simplified, but
expressively equivalent, set-up where all variables are second-order and atomic
formulas are of the forms Xi ⊆ Xj and El(Xi, Xj). The decision problem for a
given structure G is the problem of establishing, for any MSO sentence ϕ, whether
G ² ϕ. We shall focus our attention on expanded graph structures (G, V̄ ), where



V̄ = (V1, . . . , Vm), with Vj ⊆ Dom(G) for 1 ≤ j ≤ m. The decision problem for
expanded structures (G, V̄ ) is the problem of establishing, for any MSO formula
ϕ(X1, . . . , Xm), whether G ² ϕ[V̄ ]. The set of all sentences (resp. formulas) that
hold in a structure G (resp. (G, V̄ )) is called the MSO theory of G (resp. (G, V̄ )),
denoted by MTh(G) (resp. MTh(G, V̄ )). MTh(G) (resp. MTh(G, V̄ )) is said to
be decidable iff there is an effective way to test whether any MSO sentence
(resp. formula) φ belongs to MTh(G) (resp. MTh(G, V̄ )). As a matter of fact,
any expanded structure (G, V̄ ) can be encoded into a Σ-colored graph GV̄ , with
|Σ| = 2m, called the canonical representation of V̄ . Each color c ∈ Σ is a subset
of {1, . . . ,m}: for any vertex v ∈ Dom(G), the color of v is the set of all and
only the indexes i such that v ∈ Vi.

Trees. For any k > 0, let [k] be the set {1, . . . , k}. A k-ary (Σ-colored) tree is
a [k]-labeled Σ-colored graph whose domain is a prefix-closed language over [k],
and whose edge relations are such that (u, v) ∈ El iff v = ul, for every l ∈ [k].
Given a tree T , we denote by T (v) the color of the vertex v. The frontier Fr(T )
of T is the prefix-free language {u ∈ Dom(T ) : ∀ l ∈ [k]. ul 6∈ Dom(T )}. In this
paper, we mainly deal with full trees, namely, trees such that if (u, ul) ∈ El for
some l ∈ [k], then (u, ui) ∈ Ei for every i ∈ [k]. Though the standard notion
of full tree includes both empty trees and singletons, it is convenient to exclude
them. A path of T is a (finite or infinite) word u such that every finite prefix of
u belongs to Dom(T ). Given a path u of T , we denote by T |u the sequence of
colors associated with the vertices of u (formally, the finite or infinite sequence
T (u0)T (u1)T (u2) . . ., where ui denotes the i-character prefix u[1..i] of u). A
branch is a maximal path, namely, a path which is not a proper prefix of any
word in Dom(T ). We denote the set of all (finite or infinite) branches by Bch(T ).

Tree automata. A k-ary Rabin tree automaton over the alphabet Σ is a
quadruple M = (S, I, E,AP), where S is a finite set of states, I ⊆ S is a
set of initial states, E ⊆ S × Σ × Sk is a transition relation, and AP is a
finite set of accepting pairs (Li, Ui), with Li, Ui ⊆ S [20]. Given an infinite
complete k-ary (Σ-colored) tree T , a run of the automaton M on T is any infinite
complete k-ary (S-colored) treeR such that (R(u), T (u),R(u1), . . . ,R(uk)) ∈ E
for every u ∈ Dom(R). We say that R is successful, and thus T is accepted
by M , if R(ε) ∈ I and, for every branch u, there exists (Li, Ui) such that
Inf (R|u) ∩ Li = ∅ and Inf (R|u) ∩ Ui 6= ∅, where Inf (α) is the set of elements
that occur infinitely often in α. We further denote by Img(α) the set of elements
that occur in α. The language L (M) is the set of all trees accepted by M .

3 An Automaton-based Approach to Decidability

In this section, we develop an automaton-based method to decide MSO theories
of infinite (complete) deterministic trees. It can be viewed as a generalization of
Carton and Thomas’ method, which exploits noticeable properties of residually
ultimately periodic words to decide MSO theories of labeled linear orderings [7].

As a first step, we show how to reduce the decision problem for the consid-
ered MSO theories to the acceptance problem for Rabin tree automata. Rabin’s



Theorem [20] establishes a strong correspondence between MSO formulas satis-
fied by an expanded tree structure (T , V̄ ) and Rabin tree automata accepting its
canonical representation TV̄ : for every formula ϕ(X̄), we can compute a Rabin
tree automaton M (and, conversely, for every Rabin tree automaton M , we can
compute a formula ϕ(X̄)) such that T ² ϕ[V̄ ] iff TV̄ ∈ L (M). Let us denote by
Acc(TV̄ ) the problem of deciding, for any given Rabin tree automaton, whether
it recognizes TV̄ . We have that

MTh(T , V̄ ) is decidable iff Acc(TV̄ ) is decidable.

By exploiting the closure under intersection and the decidability of the emptiness
problem for Rabin tree automata, one can easily show that the problem Acc(TV̄ )
is decidable for any regular tree TV̄ (a regular tree is a tree containing only finitely
many non-isomorphic subtrees). In the following, we shall extend the class of
trees for which this acceptance problem turns out to be decidable. We introduce
the class of residually regular trees and we solve their acceptance problem by
reducing them to equivalent regular trees (according to a suitable notion of tree
equivalence).
Let us preliminarily introduce some tools for tree manipulation [17] (for the sake
of simplicity, hereafter we shall omit the subscript V̄ , thus writing T for TV̄ ).

Definition 1. Let T be a k-ary tree, U ⊆ Fr(T ), and (Ru)u∈U be a family of
k-ary trees. We denote by T [u/Ru]u∈U the tree resulting from the simultaneous
substitution in T of each node u ∈ U by Ru.

Definition 2. For every pair of (full) k-ary Σ-colored trees T1 and T2 and every
color c ∈ Σ, the concatenation T1 ·c T2 is the tree resulting from the simultaneous
substitution of all the c-colored leaves of T1 by T2, namely, the (full) k-ary Σ-
colored tree T1[u/T2]u∈U , where U = {u ∈ Fr(T1) : T1(u) = c}.
It is not difficult to show that the operator ·c is not associative. We assume that
it associates to the left. Definition 2 can be generalized to the case of infinite
concatenations. Given an infinite sequence (cn)n∈N of colors in Σ and an infinite
sequence (Tn)n∈N of full k-ary (Σ-colored) trees, the infinite concatenation S =
T0 ·c0 T1 ·c1 . . . is defined as follows: Dom(S) =

⋃
n∈NDom(Sn), where S0 = T0,

Sn+1 = Sn ·cn Tn+1, and S(u) = c if and only if Sn(u) = c for all, but finitely
many, n. A factorization is a finite or infinite concatenation T0 ·c0 T1 ·c1 . . .
(we denote infinite concatenations by

∏
i∈N(Ti)ci). A factorization is ultimately

periodic if every Tn is a regular full tree and there are two positive integers p and
q (called respectively prefix and period) such that, for every n ≥ p, cn = cn+q

(if cn+q exists) and Tn = Tn+q (if Tn+q exists). The following proposition links
ultimately periodic factorizations to regular trees [17].

Proposition 1. A full tree T is regular iff it has an ultimately periodic factor-
ization.

From Proposition 1, it immediately follows that Acc(T ) is decidable for any
infinite (complete) deterministic tree T generated by an ultimately periodic fac-
torization.



3.1 Residually Regular Trees

We now show how to reduce the acceptance problem for a large class of infinite
(complete) deterministic trees to the acceptance problem for equivalent (accord-
ing to a suitable notion of tree equivalence ≡M ) regular trees. As a preliminary
step, we introduce the notion of (finite or infinite) partial run of a Rabin tree
automaton M = (S, I, E,AP): a partial run of M on a full, finite or infinite,
(Σ-colored) tree T is a full (S-colored) tree P such that (i) Dom(P) = Dom(T )
and (ii) (P(v), T (v),P(v1), . . . ,P(vk)) ∈ E, for every v ∈ Dom(P) \ Fr(P).

Definition 3. Given a Rabin tree automaton M = (S, I, E,AP) over Σ, and
two full (Σ-colored) trees T1 and T2, T1 ≡M T2 holds iff, for every partial run
P1 of M on T1, there exists a partial run P2 of M on T2 (and vice versa) such
that
1. T1(ε) = T2(ε) and P1(ε) = P2(ε);
2. for every v ∈ Fr(T1), there exists u ∈ Fr(T2) such that T1(v) = T2(u),
P1(v) = P2(u), and Img(P1|v)) = Img(P2|u), and vice versa;

3. for any infinite branch v ∈ Bch(T1), there exists an infinite branch u ∈
Bch(T2) such that Inf (P1|v) = Inf (P2|u), and vice versa.

The equivalence ≡M satisfies the following properties [17].

Theorem 1. It holds that:
1. ≡M has finite index;
2. for every pair of factorizations T0 ·c0 T1 ·c1 . . . and T ′0 ·c0 T ′1 ·c1 . . . such that
Ti ≡M T ′i for every i, we have T0 ·c0 T1 ·c1 . . . ≡M T ′0 ·c0 T ′1 ·c1 . . .;

3. for every pair of ≡M -equivalent infinite (complete) trees T1, T2, we have that
T1 ∈ L (M) iff T2 ∈ L (M) (in such a case we say that T1 and T2 are
indistinguishable by automaton M).

It is worth pointing out that the proposed notion of equivalence can be easily
tailored to different kinds of automata, such as, for instance, Muller and parity
tree automata.

Taking advantage of Theorem 1, we identify a large class of deterministic
trees, that we call residually regular trees, whose acceptance problem is decid-
able. We say that an infinite sequence S = T0 T1 T2 . . . of finite full trees is
1-residually ultimately periodic if, for every Rabin tree automaton M , one can
compute an ultimately periodic sequence S ′ = T ′0 T ′1 T ′2 . . . of finite trees such
that Ti ≡M T ′i , for all i. We call 1-residually regular trees those trees that
are obtained by concatenating the trees in a 1-residually ultimately periodic
sequence. The notion of 1-residually ultimately periodic factorization can be ex-
tended to level n, with n being any countable ordinal, by no longer considering
finite trees but level n′ < n residually regular trees. For every countable ordinal
n, n-residually regular trees can be defined as follows, where we denote by [i]p,q

either i or p + ((i− p) mod q), depending on whether i < p or not.

Definition 4. Given a countable ordinal n, a factorization T0 ·c0 T1 ·c1 . . . is
n-residually ultimately periodic iff the following two conditions hold:



1. for every i, either Ti is a finite full tree or we can provide an n′-residually
ultimately periodic factorization of Ti, with n′ < n;

2. for any Rabin tree automaton M , there exist two positive integers p and q
(called prefix and period of the factorization with respect to ≡M ) such that
ci = c[i]p,q

and Ti ≡M T[i]p,q
, for every i.

An n-residually regular tree is a tree enjoying an n-residually ultimately periodic
factorization. A residually ultimately periodic factorization is an n-residually ul-
timately periodic factorization, for some countable ordinal n. A residually regular
tree is a tree enjoying a residually ultimately periodic factorization.

It is worth noticing that the above definition allows residually ultimately periodic
factorizations to encompass residually regular factors of any arbitrary level. For
instance, we can start with some factors T0, T1, T2, . . . which respectively are
level 1, 2, 3, . . . residually regular, and concatenate them to build an ω-residually
regular tree; then, we can concatenate ω-residually regular trees to obtain an
(ω + 1)-residually regular tree, and so on.

In order to reduce the decision problem for (n-)residually regular trees to
regular trees, we introduce the notion of ≡M -regular form. Such a notion is de-
fined by transfinite induction on n, given a Rabin tree automaton M and an
n-residually ultimately periodic factorization. Precisely, an ≡M -regular form of
a 1-residually ultimately periodic factorization

∏
i∈N(Ti)ci is a tree

∏
i∈N(T ′i )ci ,

where T ′i = T[i]p,q
and p and q are respectively a prefix and a period of the

factorization with respect to ≡M . For any countable ordinal n > 1, an ≡M -
regular form of an n-residually ultimately periodic factorization

∏
i∈N(Ti)ci is a

tree
∏

i∈N(T ′i )ci , where, depending on whether Ti is finite or not, T ′i is either
T[i]p,q

or an ≡M -regular form of an n′-residually ultimately periodic factorization
of T[i]p,q

, with n′ < n and p and q being respectively a prefix and a period of
the factorization with respect to ≡M . It is easy to verify that an ≡M -regular
form of a residually ultimately periodic factorization

∏
i∈N(Ti)ci is a regular tree

which is ≡M -equivalent to the tree generated by
∏

i∈N(Ti)ci . Furthermore, the
factorization of an ≡M -regular form is computable from a given n-residually ul-
timately periodic factorization S, which can be finitely represented by a function
mapping an integer i ∈ N to (an n′-residually, with n′ < n, ultimately periodic
factorization of) the i-th factor of S. Hence, we have the following theorem [17].

Theorem 2. Let T be the infinite (complete) deterministic tree resulting from
an n-residually ultimately periodic factorization

∏
i∈N(Ti)ci , M be a Rabin tree

automaton, and T ′ be an ≡M -regular form of
∏

i∈N(Ti)ci . We have that T ∈
L (M) iff T ′ ∈ L (M).

The upshot of such a result is that residually regular trees enjoy a decidable
acceptance problem and hence a decidable MSO theory.

3.2 Properties of Residually Ultimately Periodic Factorizations

We now identify some structural properties that allow us to easily build resid-
ually ultimately periodic factorizations. The resulting framework somehow gen-
eralizes previous results by Zhang [24] and Carton and Thomas [7]. Let T full

k,Σ



denote the language of all full k-ary Σ-colored trees. For any Rabin tree au-
tomaton M , the equivalence ≡M induces an homomorphism from the infinite
groupoid (i.e., a set endowed with a binary operation) (T full

k,Σ , ·c) to the finite
groupoid ([T full

k,Σ ]/≡M
, ·c). Given a groupoid (G, ·), an element g ∈ G, and a num-

ber n ∈ N, we denote by gn+1 the n-fold iteration of ·g applied to g, namely,
gn+1 = g · g · . . . g. We define ultimately periodic functions with respect to finite
groupoids.

Definition 5. A function f : N → N is ultimately periodic with respect
to finite groupoids ( residually ultimately periodic for short) if, for every finite
groupoid (G, ·) and every g ∈ G, there exist p ≥ 0 and q > 0 such that gf(n)+1 =
gf([n]p,q)+1, that is, (gf(n)+1)n∈N is a ultimately periodic sequence.

We say that a function is effectively residually ultimately periodic iff, for
every groupoid (G, ·) and every g ∈ G, it is possible to compute a prefix p and a
period q of the ultimately periodic sequence (gf(n)+1)n∈N. As a simple example,
the identity function is effectively residually ultimately periodic. From now on,
we restrict our attention to effectively residually ultimately periodic functions,
which can be characterized as follows.

Proposition 2. A function f : N → N is (effectively) residually ultimately
periodic iff for all l ≥ 0 and r > 0, one can compute p ≥ 0 and q > 0 such that
[f(n)]l,r = [f([n]p,q)]l,r.

Definition 6. A function f : N → N has unbounded infimum if it holds that
lim inf n →∞f(n) = ∞. In this case, we assume that, for any k, we can compute
n0 such that f(n) ≥ k for all n ≥ n0.

The following theorem provides a number of ways to build residually ul-
timately periodic functions [17]. Examples of generated functions are n2, 2n,

2n − n2, nn, n!, and the exponential tower 22..
.2

.

Theorem 3. Let f and g be residually ultimately periodic functions. The fol-
lowing functions are residually ultimately periodic as well:
1. (Sum) f + g;
2. (Difference) f − g, provided that it has unbounded infima;
3. (Product) f ∗ g;
4. (Quotient) h defined by h(n) = b f(n)

d c, with d > 0;
5. (Exponentiation) fg, provided that it has unbounded infima;
6. (Exponential tower) h defined by h(0) = 1 and h(n + 1) = bh(n), with

b > 0;
7. (Generalized sum) h defined by h(n) =

∑n−1
i=0 f(i);

8. (Generalized product) h defined by h(n) =
∏n−1

i=0 f(i);
9. (Substitution) g ◦ f .



The next theorem shows how one can combine (colored) trees to obtain resid-
ually ultimately periodic factorizations [17]. In particular, case 1. links residu-
ally ultimately periodic functions to residually ultimately periodic trees; case 2.
states that by interleaving the factors of residually ultimately periodic factoriza-
tions we obtain again a residually ultimately periodic factorization; case 3. gives
the possibility of periodically grouping the factors of a given factorization; case
4. is useful to recursively define the factors of a residually ultimately periodic
factorization.

Theorem 4. Given an ultimately periodic sequence of colors c1c2c3 . . ., the fac-
torization

∏
i∈N(Ti)ci is residually ultimately periodic in each of the following

cases:
1. (Iteration) if Ti = U (f(i)+1)c , where U (f(i)+1)c denotes the f(i)-fold itera-

tion of ·c U applied to U , with U being a residually regular tree and f being
a residually ultimately periodic function;

2. (Interleaving) if there is q > 0 such that, for every 0 ≤ i < q,
∏

j∈N(Tjq+i)c

is a residually ultimately periodic factorization;
3. (Grouping) if there is q > 0 and there is a residually ultimately periodic

factorization
∏

j∈N(Uj)c such that, for every i ∈ N, Ti = (Uiq ·c Uiq+1 ·c . . . ·c
Uiq+q−1);

4. (Recursion) if T0 is a residually regular tree and there is a residually ul-
timately periodic factorization

∏
j∈N(Uj)c such that Ti+1 = Ui ·c (Ti ·d Ui) ·c

(Ti ·d Ui) ·c . . ..

4 Some Applications of the Proposed Method

In the following, we apply the proposed method to decide the theories of two
meaningful tree structures. Futhermore, we provide an embedding of some rep-
resentative graphs of the so-called Caucal hierarchy [9], namely, tree generators
for MSO interpretations, into our framework. We first recall the basic notions of
unfolding and MSO interpretation [22].

Definition 7. Let G = (S, (El)l∈Λ) be a graph structure and let v0 ∈ S be a
designated vertex of G. The unfolding of G from v0, denoted by Unf (G, v0), is
a tree structure (S′, (E′

l)l∈Λ), where S′ is the set of all the finite paths of the
form v0l0v1 . . . ln−1vn, and E′

l is the set of all the pairs of paths of the form
(v0l0v1 . . . ln−1vn, v0l0v1 . . . ln−1vnlvn+1).

Notice that the unfolding of any finite graph is (isomorphic to) a regular tree.
Moreover, unfoldings from MSO definable vertices preserve the decidability of the
MSO theories of graph structures [14]. Another transformation which preserves
decidability is the MSO interpretation, which is defined as follows.

Definition 8. Given a graph structure G = (S, (El)l∈Λ) and a finite set of labels
Γ , an MSO interpretation of G in Γ is a family (ϕl)l∈Γ of MSO formulas over
G. It gives raise to a graph G′ = (S′, (E′

l)l∈Γ ), where, for each l ∈ Σ, E′
l =

{(v, w) ∈ S × S : G ² ϕl[v, w]}, and S′ ⊆ S is the set of all vertices occurring
in the edge relations E′

l.



As a first example of application of our approach, consider the semi-infinite
line L with forward edges, backward edges and loops (cf. Figure 1), which belongs
to the Caucal hierarchy, and its unfolding from the leftmost vertex.

#
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Fig. 1. The semi-infinite line L.

We provide an alternative proof of the decidability of the MSO theory of the
unfolding of L. The unfolded graph can be embedded into the infinite complete
{w, b}-colored tree T of Figure 2. Black nodes b correspond to nodes of the
original structure, while white nodes w are added to complete the tree. For the
sake of readability, we adopt {1, 1̄, #} instead of {1, 2, 3} as the set of edge labels.
By adding an auxiliary third color c to manage concatenation, a factorization∏

i∈N(Ti)c of T can be inductively defined as follows (see the dashed regions in
Figure 2):
• T0 = U ·w W;
• Ti+1 = U ·w (Ti ·c U) ·w (Ti ·c U) ·w . . .,

where U =
∏

j∈N(b〈w, b, c〉)b (we denote by b〈w, b, c〉 the full finite ternary tree
with a b-colored root and 3 leaves colored by w, b, and c, respectively) and W
is the infinite complete ternary {w}-colored tree. From Theorem 4 (case 4.), it
follows that such a factorization is residually ultimately periodic. This accounts
for the decidability of MTh(T ).
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T1 T2

T2

Fig. 2. The tree T embedding the unfolding of L.

As a second example, consider the infinite binary {w, b}-colored tree Ttow
such that Ttow (u) = b iff u = 1n0m, with m < tow(n), where tow is the expo-
nential tower defined by tow(0) = 1 and tow(n + 1) = 2tow(n) (cf. Figure 3). In
[6], Carayol and Wöhrle show that such a tree does not belong to the Caucal
hierarchy, but it enjoys a decidable MSO theory. We give an alternative proof
of the decidability of MTh(Ttow ) by providing a residually ultimately periodic
factorization of Ttow . A factorization

∏
i∈N(Ti)c of Ttow can be defined as follows

(see the dashed regions in Figure 3):



• T0 = b〈w, c〉 ·w W;
• Ti = b〈b, c〉 ·b

(
b〈b, w〉 ·w W

)(tow(i)−1)b ·b W for i ≥ 1,

where W is the infinite complete binary {w}-colored tree. From Theorem 4 (case
1.), it follows that such a factorization is residually ultimately periodic, and thus
MTh(Ttow ) is decidable.
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Fig. 3. The residually regular tree Ttow .

We conclude the section by showing that residually regular trees allow us to
capture a relevant subclass of the graphs in the Caucal hierarchy [9]. The level
0 of the Caucal hierarchy consists of all the finite graphs. At level n + 1, we find
all the graphs which are obtained from level n graphs by applying an unfolding
followed by an MSO interpretation. Since both unfoldings and MSO interpreta-
tions preserve decidability, the resulting hierarchy contains only graphs with a
decidable MSO theory. In [6], Carayol and Wöhrle show that, for each level of
the Caucal hierarchy, there exists a representative graph, called generator, from
which all the other graphs belonging to that level can be obtained by the applica-
tion of the basic operations of rational marking and MSO interpretation. These
generators are closely related to the ‘tree generators’ introduced by Cachat to
simulate games on higher order pushdown systems [5]. The level 1 tree generator
C1 is the infinite complete binary tree. The level 2 tree generator C2 is the tree
obtained from C1 by adding reverse edges and a loop for each vertex (labeled by
fresh symbols, e.g., 1̄, 2̄, #), and then by unfolding the resulting graph from its
root. C3 is obtained by applying the same operation (which we shortly denote by
MSOUnf ) to C2, and so on. Since MSOUnf is an MSO interpretation followed
by an unfolding, tree generators belong to the Caucal hierarchy. Tree generators
can be embedded into residually regular trees as follows. First, C1 can be viewed
as a uniformly colored tree and thus it obviously is a residually regular tree.
Then, by generalizing the construction used in the case of the semi-infinite line,
one can prove that the class of residually regular trees is closed under MSOUnf
[17]. As matter of fact, we need to slightly modify the definition of MSOUnf to
operate inside the class of full trees; however, this is a trivial generalization which
preserves all results about decidability and expressiveness of tree generators.



5 Conclusions

In this paper we devised an automaton-based method that allows us to solve the
decision problem for the MSO theories of several deterministic tree structures.
First, by taking advantage of well-known results from automata theory, we re-
duced the problem to the acceptance problem for Rabin tree automata. Then,
we introduced the class of residually regular trees, which extends that of regular
trees, and we showed that one can solve the acceptance problem for this family
of trees by reducing it to the acceptance problem for equivalent regular trees.
Finally, we applied the proposed method to some meaningful examples of tree
structures.

The proposed method generalizes the one developed by Carton and Thomas
to decide the theory of the linear order (N, <) extended with suitable unary
relations, that is, those relations which are encoded by residually ultimately
periodic words [7]. Since any ω-word over a finite alphabet Σ can be seen as an
infinite 1-ary Σ-colored tree and string concatenation is definable in terms of tree
concatenation, the notion of residually regular tree subsumes that of residually
ultimately periodic word. Furthermore, some interesting binary relations over
the linear order (N, <) turn out to be MSO definable in terms of residually
regular trees. As an example, in [17, 18] we give an alternative decidability proof
for the theory of the linear order (N, <) extended with the flip function [16, 22].
Finally, many trees in the Caucal hierarchy [9] can be embedded into residually
regular trees. This last fact hints at the possibility of establishing a connection
between our approach and the transformational one developed by Caucal for
deciding MSO theories of infinite graphs.

We are currently trying to determine whether or not any deterministic tree
in the Caucal hierarchy can be embedded into a suitable residually regular tree.
We already know that the converse does not hold, since there exist some deter-
ministic trees, such as, for instance, Ttow (cf. Section 4), which do not belong
to the Caucal hierarchy, but can be handled by our method. We are also inves-
tigating the possibility of extending the proposed automaton-based framework
to manage non-deterministic trees. To this end, we are looking for a more gen-
eral notion of tree equivalence based on more expressive automata, such as, for
instance, the automata on tree-like structures used in [23].
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